In vivo NIRF and MR dual-modality imaging using glycol chitosan nanoparticles.
نویسندگان
چکیده
One difficulty of diagnosing and treating cancer is that it is very challenging to detect cancers in the early stages before metastasis occurs. A variety of imaging modalities needs to be used from non-invasive, moderate resolution modalities, such as magnetic resonance imaging (MRI) to very high-resolution (e.g. fluorescence) imaging that can help guide surgeons during a surgical operation. While MRI can have relatively high resolution and deep penetration to visualize soft tissues, low sensitivity of MRI frequently requires tumor imaging agents to enhance the MRI contrast at the tumor site. At the other end of the resolution spectrum, near infrared fluorescence (NIRF) imaging has very high sensitivity but frequently cannot be utilized for initial human in vivo imaging due to its very limited penetration depth. To combine the advantages of each imaging modality we have constructed MRI and NIRF dual-modality nanoparticles using glycol chitosan, Cy5.5, and superparamagnetic iron oxide nanoparticles (SPIOs). We have demonstrated these advantages for dual-modality, in vivo tumor imaging in mice. Our studies suggest the potential use of NIRF and MR dual modality imaging for human cancer diagnosis.
منابع مشابه
Radiolabeling and Biodistribution of new dual modality nanoparticle probe in Nuclear Medicine
Introduction: Dual-modality contrast agents, such as radiolabeled nanoparticles, are promising candidates for a number of diagnostic applications, namely SPECT imaging with MR imaging. So the aim of study was evaluating potential of Chitosan-Coated Magnetic Nanoparticles(SPION) labeled with 99mTc as new Dual-modality probes for liver Imaging. Materials and Methods:</st...
متن کاملIn vivo MR and Fluorescence Dual-modality Imaging of Atherosclerosis Characteristics in Mice Using Profilin-1 Targeted Magnetic Nanoparticles
AIMS This study aims to explore non-invasive imaging of atherosclerotic plaque through magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) by using profilin-1 targeted magnetic iron oxide nanoparticles (PF1-Cy5.5-DMSA-Fe3O4-NPs, denoted as PC-NPs) as multimodality molecular imaging probe in murine model of atherosclerosis. METHODS AND RESULTS PC-NPs were constructed by conj...
متن کاملIntravascular optical imaging of high-risk plaques in vivo by targeting macrophage mannose receptors.
Macrophages mediate atheroma expansion and disruption, and denote high-risk arterial plaques. Therefore, they are substantially gaining importance as a diagnostic imaging target for the detection of rupture-prone plaques. Here, we developed an injectable near-infrared fluorescence (NIRF) probe by chemically conjugating thiolated glycol chitosan with cholesteryl chloroformate, NIRF dye (cyanine ...
متن کاملElectrostatically assembled biocompatible polymer nanoparticles for MR/optical dual-modality imaging nanoprobes.
Biocompatible dual-modality imaging nanoprobes were synthesized by the electrostatic assembly of poly(γ-glutamic acid)[Gd-DTPA] and chitosan[IRDye800] and applied for the imaging of immune cells (phagocytic) and cancer cells (non-phagocytic).
متن کاملMultifunctional dendrimer-based nanoparticles for in vivo MR/CT dual-modal molecular imaging of breast cancer
Development of dual-mode or multi-mode imaging contrast agents is important for accurate and self-confirmatory diagnosis of cancer. We report a new multifunctional, dendrimer-based gold nanoparticle (AuNP) as a dual-modality contrast agent for magnetic resonance (MR)/computed tomography (CT) imaging of breast cancer cells in vitro and in vivo. In this study, amine-terminated generation 5 poly(a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of controlled release : official journal of the Controlled Release Society
دوره 163 2 شماره
صفحات -
تاریخ انتشار 2012